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Conditional entropy of an ensemble X, given that y = bj 

 

measures the uncertainty remaining about random variable X after specifying that random 

variable Y has taken on a particular value y = bj. It is defined naturally as the entropy of the 

probability distribution 

p(x|y = bj): 

 

                                        (7) 

 

If we now consider the above quantity averaged over all possible outcomes that Y might have, 

each weighted by its probability p(y), then we arrive at the... 

 

Conditional entropy of an ensemble X, given an ensemble Y: 

 

        (8) 

 

 

and we know from the Sum Rule that if we move the p(y) term from the outer summation over 

y, to inside the inner summation over x, the two probability terms combine and become just 

p(x, y) summed over all x, y. Hence a simpler expression for this conditional entropy is: 

 

 

 

(9) 

 

 

 

This measures the average uncertainty that remains about X, when Y is known. 

 

Chain Rule for Entropy 

The joint entropy, conditional entropy, and marginal entropy for two 

ensembles X and Y are related by: 

 

H(X, Y ) = H(X) + H(Y |X) = H(Y ) + H(X|Y )                                 (10) 

 

It should seem natural and intuitive that the joint entropy of a pair of random variables is the 

entropy of one plus the conditional entropy of the other (the uncertainty that it adds once its 

dependence on the first one has been discounted by conditionalizing on it). You can derive the 

Chain Rule from the earlier definitions of these three entropies. Corollary to the Chain Rule: If 

we have three random variables X, Y, Z, the conditionalizing of the joint distribution of any 

two of them, upon the third, is also expressed by a Chain Rule: 

 

H(X, Y |Z) = H(X|Z) + H(Y |X,Z)                                             (11) 

 

“Independence Bound on Entropy” 

A consequence of the Chain Rule for Entropy is that if we have many different random 

variables X1, X2, ..., Xn, then the sum of all their individual entropies is an upper bound on 

their joint entropy: 
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 (12) 

 

 

Their joint entropy only reaches this upper bound if all of the random variables are independent. 

 

Mutual Information between X and Y 

The mutual information between two random variables measures the amount of information 

that one conveys about the other. Equivalently, it measures the average reduction in uncertainty 

about X that results from learning about Y . It is defined: 

 

 

(13) 

 

 

 

Clearly X says as much about Y as Y says about X. Note that in case X and Y are independent 

random variables, then the numerator inside the logarithm equals the denominator. Then the 

log term vanishes, and the mutual information equals zero, as one should expect. Non-

negativity: mutual information is always ≥ 0. In the event that the two random variables are 

perfectly correlated, then their mutual information is the entropy of either one alone. (Another 

way to say this is: I(X; X) = H(X): the mutual information of a random variable with itself is 

just its entropy. For this reason, the entropy H(X) of a random variable X is sometimes referred 

to as its self-information.) These properties are reflected in three equivalent definitions for the 

mutual information between X and Y : 

 

I(X; Y ) = H(X) − H(X|Y )                                               (14) 

 

I(X; Y ) = H(Y ) − H(Y |X) = I(Y ;X)                                    (15) 

 

I(X; Y ) = H(X) + H(Y ) − H(X, Y )                                       (16) 

 

In a sense the mutual information I(X; Y ) is the intersection between H(X) and H(Y ), since it 

represents their statistical dependence. In the Venn diagram given at the top of page 18, the 

portion of H(X) that does not lie within I(X; Y ) is just H(X|Y ). The portion of H(Y ) that does 

not lie within I(X; Y ) is just H(Y |X). 

 

Distance D(X, Y ) between X and Y 

The amount by which the joint entropy of two random variables exceeds their mutual 

information is a measure of the “distance” between them: 

 

D(X, Y ) = H(X, Y ) − I(X; Y )                                          (17) 

 

Note that this quantity satisfies the standard axioms for a distance: 

 

D(X, Y ) ≥ 0, D(X,X) = 0, D(X, Y ) = D(Y,X), and D(X,Z) ≤ D(X, Y ) + D(Y,Z). 


